If the leg is 10 kg then the torque on the hip joint is. L=0.48m m=10 kg g=9.81 m/s^2

 $M = m * g * sin(\phi) * L \Rightarrow M = 10 * 9.81 * sin(60) * 0.48 = 40.7Nm$

If the weight of the human is on a leg moment-arm = x * cos(30)M = F * x = 100kg * 0.48 * 9.81 * cos(30) = 407Nm

moment-arm for motor=0.03m $M = F * x \Rightarrow F = \frac{M}{x} = \frac{407}{0.03} = 13.6kN$

motor diameter is $15\text{mm} \Rightarrow \text{R}=7.5\text{mm}$ M = 13.6kN * 0.0075 = 102Nm

The motor needs to rotate proportionally one circle in 1 sek n=round per second $1 \pm 12.6 kN = 102m \pm n \Rightarrow n = 1$

 $1 * 13.6kN = 102m * n \Rightarrow n = \frac{13.6}{102 = 133.3sn/sek}$

Figure 1: idea for a hip joint

Figure 2: idea for a hip joint

Figure 3: A joint that unites all the motion into 1 point.

Figure 4: Basic shaft cross like joint.